A270488 Number of ordered ways to write n = x^2 + y*(y+1) + z*(z^2+1), where x, y and z are nonnegative integers.
1, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 3, 3, 3, 2, 2, 4, 2, 3, 1, 3, 3, 3, 3, 2, 2, 3, 2, 2, 2, 4, 6, 3, 3, 3, 1, 5, 3, 4, 4, 3, 4, 3, 2, 3, 3, 6, 2, 5, 2, 2, 5, 3, 3, 1, 4, 4, 4, 5, 3, 3, 5, 1, 1, 2, 3, 7, 4, 5, 4, 3, 3, 6, 2, 5, 4, 6, 2, 5, 4, 3
Offset: 0
Keywords
Examples
a(35) = 1 since 35 = 5^2 + 0*1 + 2*(2^2+1). a(54) = 1 since 54 = 2^2 + 4*5 + 3*(3^2+1). a(62) = 1 since 62 = 2^2 + 7*8 + 1*(1^2+1). a(63) = 1 since 63 = 7^2 + 3*4 + 1*(1^2+1). a(197) = 1 since 197 = 5^2 + 6*7 + 5*(5^2+1). a(285) = 1 since 285 = 15^2 + 5*6 + 3*(3^2+1). a(339) = 1 since 339 = 17^2 + 4*5 + 3*(3^2+1). a(479) = 1 since 479 = 7^2 + 20*21 + 2*(2^2+1). a(505) = 1 since 505 = 13^2 + 17*18 + 3*(3^2+1). a(917) = 1 since 917 = 15^2 + 18*19 + 7*(7^2+1).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
Programs
-
Mathematica
SQ[x_]:=SQ[x]=IntegerQ[Sqrt[x]] Do[r=0;Do[If[SQ[n-y(y+1)-z(z^2+1)],r=r+1],{y,0,(Sqrt[4n+1]-1)/2},{z,0,(n-y(y+1))^(1/3)}];Print[n," ",r];Continue,{n,0,80}]
Comments