This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270496 #11 May 27 2018 02:00:39 %S A270496 1,12,97,675,4418,28396,183615,1211936,8237223,57944187,422950882, %T A270496 3206531728,25247250641,206313943476,1747990803645,15336960025775, %U A270496 139187730958406,1304967471569208,12624893940830455,125892638744630088,1292581981392588771 %N A270496 Sum of the sizes of the fourth blocks in all set partitions of {1,2,...,n}. %H A270496 Alois P. Heinz, <a href="/A270496/b270496.txt">Table of n, a(n) for n = 4..575</a> %H A270496 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %p A270496 b:= proc(n, m) option remember; `if`(n=0, [1, 0], %p A270496 add((p->`if`(j<5, [p[1], p[2]+p[1]*x^j], p))( %p A270496 b(n-1, max(m, j))), j=1..m+1)) %p A270496 end: %p A270496 a:= n-> coeff(b(n, 0)[2], x, 4): %p A270496 seq(a(n), n=4..30); %t A270496 b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 5, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; %t A270496 a[n_] := Coefficient[b[n, 0][[2]], x, 4]; %t A270496 Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, May 27 2018, translated from Maple *) %Y A270496 Column p=4 of A270236. %K A270496 nonn %O A270496 4,2 %A A270496 _Alois P. Heinz_, Mar 18 2016