This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270498 #10 May 27 2018 02:29:07 %S A270498 1,23,324,3645,36223,334751,2965654,25691104,220643295,1897548384, %T A270498 16463907354,144927422746,1299763249771,11912250951457, %U A270498 111803042249042,1076045623549383,10628068291940557,107760039986995689,1121581530251066296,11980190581723881858 %N A270498 Sum of the sizes of the sixth blocks in all set partitions of {1,2,...,n}. %H A270498 Alois P. Heinz, <a href="/A270498/b270498.txt">Table of n, a(n) for n = 6..575</a> %H A270498 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %p A270498 b:= proc(n, m) option remember; `if`(n=0, [1, 0], %p A270498 add((p->`if`(j<7, [p[1], p[2]+p[1]*x^j], p))( %p A270498 b(n-1, max(m, j))), j=1..m+1)) %p A270498 end: %p A270498 a:= n-> coeff(b(n, 0)[2], x, 6): %p A270498 seq(a(n), n=6..30); %t A270498 b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 7, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; %t A270498 a[n_] := Coefficient[b[n, 0][[2]], x, 6]; %t A270498 Table[a[n], {n, 6, 30}] (* _Jean-François Alcover_, May 27 2018, translated from Maple *) %Y A270498 Column p=6 of A270236. %K A270498 nonn %O A270498 6,2 %A A270498 _Alois P. Heinz_, Mar 18 2016