This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270499 #10 May 27 2018 02:29:15 %S A270499 1,30,536,7473,90223,995191,10354804,103779309,1016654053,9840330258, %T A270499 94884791378,917358452410,8938608738199,88139900141632, %U A270499 882388425916186,8991438542446875,93434278760386701,991477889069432577,10753621593467498170,119276548511953973463 %N A270499 Sum of the sizes of the seventh blocks in all set partitions of {1,2,...,n}. %H A270499 Alois P. Heinz, <a href="/A270499/b270499.txt">Table of n, a(n) for n = 7..575</a> %H A270499 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %p A270499 b:= proc(n, m) option remember; `if`(n=0, [1, 0], %p A270499 add((p->`if`(j<8, [p[1], p[2]+p[1]*x^j], p))( %p A270499 b(n-1, max(m, j))), j=1..m+1)) %p A270499 end: %p A270499 a:= n-> coeff(b(n, 0)[2], x, 7): %p A270499 seq(a(n), n=7..30); %t A270499 b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 8, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; %t A270499 a[n_] := Coefficient[b[n, 0][[2]], x, 7]; %t A270499 Table[a[n], {n, 7, 30}] (* _Jean-François Alcover_, May 27 2018, translated from Maple *) %Y A270499 Column p=7 of A270236. %K A270499 nonn %O A270499 7,2 %A A270499 _Alois P. Heinz_, Mar 18 2016