A270516 Number of ordered ways to write n = x^3*(x+1) + y*(y+1)/2 + z*(3z+2), where x and y are nonnegative integers, and z is an integer.
1, 2, 2, 3, 2, 2, 3, 2, 4, 2, 3, 4, 1, 3, 1, 2, 3, 3, 3, 2, 2, 3, 4, 3, 5, 3, 4, 2, 4, 4, 3, 5, 2, 5, 2, 5, 5, 2, 5, 5, 3, 4, 3, 5, 4, 5, 7, 2, 4, 1, 5, 2, 4, 3, 2, 5, 3, 6, 3, 3, 5, 6, 2, 5, 2, 4, 5, 4, 8, 3, 4, 5, 1, 5, 3, 1, 4, 3, 5, 4, 5
Offset: 0
Keywords
Examples
a(72) = 1 since 72 = 2^3*3 + 5*6/2 + 3*(3*3+2). a(75) = 1 since 75 = 0^3*1 + 4*5/2 + (-5)*(3*(-5)+2). a(5387) = 1 since 5387 = 7^3*8 + 2*3/2 + (-30)*(3*(-30)+2). a(9331) = 1 since 9331 = 8^3*9 + 2*3/2 + (-40)*(3*(-40)+2). a(16561) = 1 since 16561 = 1^3*2 + 101*102/2 + (-62)*(3*(-62)+2). a(22237) = 1 since 22237 = 6^3*7 + 104*105/2 + 71*(3*71+2). a(27569) = 1 since 27569 = 2^3*3 + 49*50/2 + (-94)*(3*(-94)+2). a(63947) = 1 since 63947 = 0^3*1 + 173*174/2 + (-128)*(3*(-128)+2). a(78610) = 1 since 78610 = 16^3*17 + 52*53/2 + 50*(3*50+2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Crossrefs
Programs
-
Mathematica
OQ[x_]:=OQ[x]=IntegerQ[Sqrt[3x+1]] Do[r=0;Do[If[OQ[n-y(y+1)/2-x^3*(x+1)],r=r+1],{y,0,(Sqrt[8n+1]-1)/2},{x,0,(n-y(y+1)/2)^(1/4)}];Print[n," ",r];Continue,{n,0,80}]
Comments