A270527 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/k!.
2, 2, 4, 21, 168, 10754, 25461498, 105205312405537, 2273436544813042470905435068, 580632014636885174037652548241171956049642213022500047, 105076738483143967759563061000636154401568577693011463452250666394865203888381724797435152416096091560375615
Offset: 1
Examples
(1/2)^(1/3) = 1/(1*2) + 1/(2*2) + 1/(6*4) + 1/(24*21) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..13
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/k!; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
Comments