cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270533 Number of ordered ways to write n = x^4 + x^3 + y^2 + z*(3z-1)/2, where x and y are nonnegative integers, and z is an integer.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 2, 2, 5, 2, 5, 2, 1, 3, 1, 4, 3, 5, 6, 4, 5, 4, 5, 3, 4, 4, 2, 4, 3, 5, 5, 4, 8, 4, 4, 4, 3, 3, 3, 3, 2, 4, 5, 9, 3, 5, 4, 3, 4, 2, 4, 3, 6, 4, 5, 3, 5, 4, 5, 4, 4, 2, 1, 6, 2, 7, 2, 7, 5, 2, 5, 4, 3, 5, 4, 3, 5, 3, 6, 1, 7, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 18 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 20, 22, 70, 87, 167, 252, 388, 562, 636, 658, 873, 2598, 14979, 18892, 20824.
(ii) Each n = 0,1,2,... can be written as x*P(x) + y^2 + z*(3z-1)/2 with x and y nonnegative integers, and z an integer, where P(x) is either of the polynomials x^3+2, x^3+3, x^3+2x+8, x^3+x^2+4x+2, x^3+x^2+7x+6.
(iii) Any nonnegative integer can be expressed as x*(x^3+3) + y*(5y+4) + z*(3z-1)/2, where x is an nonnegative integer, and y and z are integers.
See also A270516 for a similar conjecture.

Examples

			a(20) = 1 since 20 = 1^4 + 1^3 + 4^2 + (-1)*(3*(-1)-1)/2.
a(22) = 1 since 22 = 0^4 + 0^3 + 0^2 + 4*(3*4-1)/2.
a(873) = 1 since 873 = 5^4 + 5^3 + 11^2 + (-1)*(3*(-1)-1)/2.
a(2598) = 1 since 2598 =  4^4 + 4^3 + 4^2 + 39*(3*39-1)/2.
a(14979) = 1 since 14979 = 1^4 + 1^3 + 51^2 + 91*(3*91-1)/2.
a(18892) = 1 since 18892 = 3^4 + 3^3 + 137^2 + (-3)*(3*(-3)-1)/2.
a(20824) = 1 since 20824 = 1^4 + 1^3 + 115^2 + (-71)*(3*(-71)-1)/2.
		

Crossrefs

Programs

  • Mathematica
    pQ[x_]:=pQ[x]=IntegerQ[Sqrt[24x+1]]
    Do[r=0;Do[If[pQ[n-y^2-x^3*(x+1)],r=r+1],{y,0,Sqrt[n]},{x,0,(n-y^2)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]