A270533 Number of ordered ways to write n = x^4 + x^3 + y^2 + z*(3z-1)/2, where x and y are nonnegative integers, and z is an integer.
1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 2, 2, 5, 2, 5, 2, 1, 3, 1, 4, 3, 5, 6, 4, 5, 4, 5, 3, 4, 4, 2, 4, 3, 5, 5, 4, 8, 4, 4, 4, 3, 3, 3, 3, 2, 4, 5, 9, 3, 5, 4, 3, 4, 2, 4, 3, 6, 4, 5, 3, 5, 4, 5, 4, 4, 2, 1, 6, 2, 7, 2, 7, 5, 2, 5, 4, 3, 5, 4, 3, 5, 3, 6, 1, 7, 4, 4
Offset: 0
Keywords
Examples
a(20) = 1 since 20 = 1^4 + 1^3 + 4^2 + (-1)*(3*(-1)-1)/2. a(22) = 1 since 22 = 0^4 + 0^3 + 0^2 + 4*(3*4-1)/2. a(873) = 1 since 873 = 5^4 + 5^3 + 11^2 + (-1)*(3*(-1)-1)/2. a(2598) = 1 since 2598 = 4^4 + 4^3 + 4^2 + 39*(3*39-1)/2. a(14979) = 1 since 14979 = 1^4 + 1^3 + 51^2 + 91*(3*91-1)/2. a(18892) = 1 since 18892 = 3^4 + 3^3 + 137^2 + (-3)*(3*(-3)-1)/2. a(20824) = 1 since 20824 = 1^4 + 1^3 + 115^2 + (-71)*(3*(-71)-1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Crossrefs
Programs
-
Mathematica
pQ[x_]:=pQ[x]=IntegerQ[Sqrt[24x+1]] Do[r=0;Do[If[pQ[n-y^2-x^3*(x+1)],r=r+1],{y,0,Sqrt[n]},{x,0,(n-y^2)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]
Comments