A270545 Number of equilateral triangle units forming perimeter of equilateral triangle.
1, 4, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Michel Marcus, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - x)^2, {x, 0, 53}], x] (* Michael De Vlieger, Mar 21 2016 *)
-
PARI
a(n)=if(n<2,3*n+1,6*n-3) \\ Charles R Greathouse IV, Mar 19 2016
-
PARI
Vec((1+x)*(1+x+x^2)/(1-x)^2 + O(x^50)) \\ Colin Barker, Mar 20 2016
Formula
a(0)=1 and a(1)=4; thereafter a(n) = (n+1)^2-(n-2)^2 = 6*n-3.
a(n) = 2*a(n-1)-a(n-2) for n>3. G.f.: (1+x)*(1+x+x^2) / (1-x)^2. - Colin Barker, Mar 20 2016
a(n) = A016945(n-1), n>1.
Comments