This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270546 #12 Feb 16 2025 08:33:31 %S A270546 2,2,5,325,200533,65627675599,22975481891957121466348, %T A270546 1958997403653886589078102754522745217186637162, %U A270546 141280756113351994103874857935521871912536028357392961997286697261498102983722388787617517574 %N A270546 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/(2k-1). %C A270546 Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x. %C A270546 See A269993 for a guide to related sequences. %H A270546 Clark Kimberling, <a href="/A270546/b270546.txt">Table of n, a(n) for n = 1..12</a> %H A270546 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A270546 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %e A270546 sqrt(1/2) = 1/(1*2) + 1/(3*2) + 1/(5*5) + 1/(7*325) + ... %t A270546 r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10; %t A270546 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270546 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270546 x = Sqrt(1/2); Table[n[x, k], {k, 1, z}] %o A270546 (PARI) r(k) = 1/(2*k-1); %o A270546 f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); %o A270546 a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Apr 03 2016 %Y A270546 Cf. A269993, A005408, A010503. %K A270546 nonn,frac,easy %O A270546 1,1 %A A270546 _Clark Kimberling_, Apr 02 2016