cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270557 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/(2k-1).

Original entry on oeis.org

2, 2, 2, 6, 35, 1828, 87102089, 9369260399911997, 79759690931475868535017424372273, 6278545782421133501164266118042557416295332543123744442037840298
Offset: 1

Views

Author

Clark Kimberling, Apr 03 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			(1/2)^(1/3) = 1/(1*2) + 1/(3*2) + 1/(5*2) + 1/(7*6) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]