A270557 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/(2k-1).
2, 2, 2, 6, 35, 1828, 87102089, 9369260399911997, 79759690931475868535017424372273, 6278545782421133501164266118042557416295332543123744442037840298
Offset: 1
Examples
(1/2)^(1/3) = 1/(1*2) + 1/(3*2) + 1/(5*2) + 1/(7*6) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..13
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
Comments