A270559 Number of ordered ways to write n as x^4 + x^3 + y^2 + z*(z+1)/2, where x, y and z are integers with x nonzero, y nonnegative and z positive.
1, 1, 2, 2, 2, 2, 3, 1, 3, 4, 2, 5, 2, 3, 4, 2, 3, 4, 5, 1, 4, 3, 3, 4, 3, 4, 5, 5, 3, 6, 5, 3, 3, 6, 2, 4, 6, 3, 9, 4, 2, 3, 4, 3, 7, 6, 3, 6, 2, 4, 2, 6, 5, 7, 6, 4, 5, 3, 6, 4, 11, 1, 5, 9, 3, 6, 5, 3, 8, 8
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = (-1)^4 + (-1)^3 + 0^2 + 1*2/2. a(2) = 1 since 2 = (-1)^4 + (-1)^3 + 1^2 + 1*2/2. a(8) = 1 since 8 = 1^4 + 1^3 + 0^2 + 3*4/2. a(20) = 1 since 20 = (-2)^4 + (-2)^3 + 3^2 + 2*3/2. a(62) = 1 since 62 = (-2)^4 + (-2)^3 + 3^2 + 9*10/2. a(97) = 1 since 97 = 1^4 + 1^3 + 2^2 + 13*14/2. a(296) = 1 since 296 = (-4)^4 + (-4)^3 + 7^2 + 10*11/2. a(1493) = 1 since 1493 = (-2)^4 + (-2)^3 + 0^2 + 54*55/2. a(4283) = 1 since 4283 = (-6)^4 + (-6)^3 + 50^2 + 37*38/2. a(4346) = 1 since 4346 = (-3)^4 + (-3)^3 + 49^2 + 61*62/2. a(5433) = 1 since 5433 = (-8)^4 + (-8)^3 + 14^2 + 57*58/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Crossrefs
Programs
-
Mathematica
TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]] Do[r=0;Do[If[x!=0&&TQ[n-y^2-x^4-x^3],r=r+1],{y,0,Sqrt[n]},{x,-1-Floor[(n-y^2)^(1/4)],(n-y^2)^(1/4)}];Print[n," ",r];Continue,{n,1,10000}]
Comments