A270580 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/(k+1).
1, 2, 7, 43, 2233, 5100361, 40162526999265, 25631935256046376027999327548, 973579151885397220180400699680033378225854987721289580493, 20355636044566797478491707686529410726939762602606154042023303177125252037523393842033572704449460687246942494130101
Offset: 1
Examples
sqrt(1/2) = 1/(2*1) + 1/(3*2) + 1/(4*7) + 1/(5*43) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/(k+1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
Comments