A270582 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/(k+1).
2, 3, 5, 65, 6529, 136091233, 41625259047416909, 2189507051227161558033650829868135, 75931290362065676573711484986356332365619562746656079489987281066955
Offset: 1
Examples
sqrt(2) - 1 = 1/(2*2) + 1/(3*3) + 1/(4*5) + 1/(5*65) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/(k+1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
Comments