A270584 Denominators of r-Egyptian fraction expansion for golden ratio - 1, where r(k) = 1/(k+1).
1, 3, 37, 1204, 21029921, 425355555167420, 439183524292095499600664584581, 240317442633783387248198509182959563857071128274317237128901, 1816763565571992723556609635427913847146292698536599340539742991592182627925499061514094793847919952134648005118828414904
Offset: 1
Examples
tau - 1 = 1/(2*1) + 1/(3*3) + 1/(4*37) + 1/(5*1204) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/(k+1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = GoldenRatio - 1; Table[n[x, k], {k, 1, z}]
Comments