A270591 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/(k+1).
1, 2, 2, 99, 12204, 249462465, 93524017020207705, 8528549813750403709101762452858246, 70071914165301390868341700110703069865385640933927590404095892463912
Offset: 1
Examples
(1/2)^(1/3) = 1/(2*1) + 1/(3*2) + 1/(4*2) + 1/(5*99) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/(k+1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
Comments