A270616 Number of ordered ways to write n as the sum of a positive square, the square of a triangular number, and a generalized pentagonal number (A001318).
1, 2, 2, 2, 2, 3, 2, 1, 3, 4, 4, 3, 2, 3, 3, 4, 6, 4, 3, 3, 2, 3, 3, 3, 6, 4, 5, 4, 1, 4, 4, 5, 2, 1, 3, 5, 6, 5, 6, 5, 5, 5, 2, 5, 6, 3, 5, 3, 5, 6, 6, 10, 4, 2, 3, 4, 5, 4, 5, 7, 6, 5, 4, 4, 6, 6, 7, 2, 3, 3, 6, 6, 5, 6, 5, 6, 5, 3, 4, 8
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2 + (0*1/2)^2 + 0*(3*0+1)/2. a(8) = 1 since 8 = 1^2 + (0*1/2)^2 + 2*(3*2+1)/2. a(29) = 1 since 29 = 4^2 + (1*2/2)^2 + 3*(3*3-1)/2. a(34) = 1 since 34 = 5^2 + (2*3/2)^2 + 0*(3*0+1)/2. a(5949) = 1 since 5949 = 47^2 + (10*11/2)^2 + 22*(3*22-1)/2. a(10913) = 1 since 10913 = 23^2 + (2*3/2)^2 +83*(3*83+1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103-113.
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), no. 7, 1367-1396.
- Zhi-Wei Sun, On universal sums ax^2+by^2+f(z), aT_x+bT_y+f(z) and zT_x+by^2+f(z), preprint, arXiv:1502.03056 [math.NT], 2015.
Crossrefs
Programs
-
Mathematica
pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]] Do[r=0;Do[If[pQ[n-x^2-(y(y+1)/2)^2],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8*Sqrt[n-x^2]+1]-1)/2}];Print[n," ",r];Continue,{n,1,80}]
Comments