cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270650 Min(i, j), where p(i)*p(j) is the n-th term of A006881.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 25 2016

Keywords

Examples

			A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes.  The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).
		

Crossrefs

Programs

  • Mathematica
    mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)
    u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
    u1 = Table[u[[k]][[1]], {k, 1, Length[t]}]  (* A096916 *)
    PrimePi[u1]  (* A270650 *)
    v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
    v1 = Table[v[[k]][[1]], {k, 1, Length[t]}]  (* A070647 *)
    PrimePi[v1]  (* A270652 *)
    d = v1 - u1  (* A176881 *)
    Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)