A270650 Min(i, j), where p(i)*p(j) is the n-th term of A006881.
1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1
Offset: 1
Examples
A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes. The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *) u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}]; u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *) PrimePi[u1] (* A270650 *) v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}]; v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *) PrimePi[v1] (* A270652 *) d = v1 - u1 (* A176881 *) Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)