A270652 Max(i,j), where p(i)*p(j) is the n-th term of A006881.
2, 3, 4, 3, 4, 5, 6, 5, 7, 4, 8, 6, 9, 7, 5, 8, 10, 11, 6, 9, 12, 5, 13, 7, 14, 10, 6, 11, 15, 8, 16, 12, 9, 17, 7, 18, 13, 14, 8, 19, 15, 20, 6, 10, 21, 11, 22, 16, 9, 23, 17, 24, 18, 12, 7, 25, 19, 26, 10, 13, 27, 8, 20, 28, 14, 11, 29, 21, 7, 30, 15, 22
Offset: 1
Examples
A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes. The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (2,3,4,3).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *) u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}]; u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *) PrimePi[u1] (* A270650 *) v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}]; v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *) PrimePi[v1] (* A270652 *) d = v1 - u1 (* A176881 *) Map[PrimePi[FactorInteger[#][[-1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)
-
Python
from math import isqrt from sympy import primepi, primerange, primefactors def A270652(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) return primepi(max(primefactors(bisection(f,n,n)))) # Chai Wah Wu, Oct 23 2024