cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270705 Number of ordered ways to write n as x^2*pen(x) + pen(y) + pen(z) with pen(x) = x*(3x+1)/2 and pen(y) <= pen(z), where x, y and z are integers ("pen" stands for "pentagonal").

Original entry on oeis.org

1, 2, 5, 5, 6, 4, 3, 4, 4, 4, 3, 2, 3, 3, 6, 4, 4, 4, 3, 3, 3, 4, 6, 5, 6, 5, 5, 8, 8, 9, 7, 5, 7, 6, 7, 9, 7, 10, 5, 5, 9, 6, 12, 7, 8, 6, 3, 10, 6, 5, 7, 5, 8, 7, 8, 9, 5, 9, 8, 7, 5, 7, 7, 5, 6, 6, 5, 4, 6, 4, 8, 5, 9, 6, 3, 7, 5, 8, 8, 8, 8, 6, 6, 6, 6, 6, 8, 3, 1, 4, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 21 2016

Keywords

Comments

Conjecture: (i) Any natural number can be written as a*x^2*pen(x) + b*pen(y) + c*pen(z) with x, y and z integers, provided that (a,b,c) is among the following ordered triples: (j,1,k) (j = 1,2; k = 1,2,3,4), (1,2,3), (3,1,4) and (4,1,3).
(ii) Every n = 0,1,2,... can be expressed as x^2*pen(x) + T(y) + T(z) with x, y and z integers, where T(m) denotes the triangular number m*(m+1)/2. Also, for each (a,b) = (1,2),(1,4),(2,2), any natural number can be written as a*x^2*T(x) + b*T(y) + T(z) with x, y and z integers.
(iii) Each natural number can be written as x^2*P(x) + pen(y) + pen(z) with x, y and z integers, where P(x) is either of the following polynomials: a*T(x) (a = 1,2,3,4,5), x*(5x+3)/2, x*(3x+1), x*(3x+2), x*(7x+1)/2, x*(4x+1), x*(4x+3), x*(9x+5)/2, x*(5x+3), x*(11x+9)/2, x*(13x+5)/2, x*(17x+9)/2, 3x*(3x+2), x*(11x+2).
See also A270594 and A270706 for other similar conjectures.

Examples

			a(88) = 1 since 88 = 1^2*pen(1) + pen(-5) + pen(-6).
		

Crossrefs

Programs

  • Mathematica
    pen[x_]:=pen[x]=x(3x+1)/2
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[n-pen[y]-x^2*pen[x]],r=r+1],{y,-Floor[(Sqrt[12n+1]+1)/6],(Sqrt[12n+1]-1)/6},{x,-1-Floor[(2(n-pen[y])/3)^(1/4)],(2(n-pen[y])/3)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]