cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270713 Numbers that are equal to the product of the number of divisors of their first k powers, for some k.

This page as a plain text file.
%I A270713 #31 Jun 12 2025 14:11:05
%S A270713 1,2,225,4050,66528,113400,120960,92802153185280,
%T A270713 726046074908612178739200000000000,
%U A270713 3524292573661555639437312000000000000,2308850758786565168980497090478080000000000,142039354014714204088514497565910023710398021722450165760000000000000000
%N A270713 Numbers that are equal to the product of the number of divisors of their first k powers, for some k.
%C A270713 a(2) = 2 is the only prime term possible, since the product of tau(p^i) is always even, and 2 is the only even prime. - _Michael De Vlieger_, Mar 27 2016
%C A270713 The corresponding k are: 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5. - _Michel Marcus_, Apr 08 2016; updated by _Max Alekseyev_, Jun 11 2025
%H A270713 Max Alekseyev, <a href="/A270713/b270713.txt">Table of n, a(n) for n = 1..14</a>
%e A270713 d(4050) * d(4050^2) = 30 * 135 = 4050;
%e A270713 d(66528) * d(66528^2) = 96 * 693 = 66528.
%p A270713 with(numtheory): P:=proc(q) local a,k,n;
%p A270713 for n from 1 to q do a:=tau(n); k:=1;
%p A270713 while a<n do k:=k+1; a:=a*tau(n^k); od;
%p A270713 if n=a then print(n); fi; od; end: P(10^6);
%t A270713 Select[Insert[Complement[Range@ #, Prime@ Range@ PrimePi@ #] &[2 10^5], 2, 2], Function[k, AnyTrue[Range@ 3, Product[DivisorSigma[0, k^i], {i, #}] == k &]]] (* _Michael De Vlieger_, Mar 25 2016 *)
%o A270713 (PARI) isok(m) = my(k = 1, prd = 1); while (prd < m, prd *= numdiv(m^k); k++); prd == m; \\ _Michel Marcus_, Apr 08 2016, Jun 12 2025
%Y A270713 Cf. A000005, A270389.
%K A270713 nonn
%O A270713 1,2
%A A270713 _Paolo P. Lava_, Mar 22 2016
%E A270713 a(8)-a(10) from _Hiroaki Yamanouchi_, Apr 07 2016
%E A270713 a(11)-a(14) from _Max Alekseyev_, Jun 10 2025