This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270744 #10 Mar 07 2025 01:28:11 %S A270744 1,2,2,3,4,32,1065,2038968,5977146319204,36314862033946243071181679, %T A270744 1028280647188781709727717632740627249617427013751977, %U A270744 958046899855070460620234639622630375078362220775180051610386376308132568342498992099474472596860400289 %N A270744 (r,1)-greedy sequence, where r(k) = 1/tau^k, where tau = golden ratio. %C A270744 Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. (The same algorithm is used to generate sequences listed at A269993.) %C A270744 Guide to related sequences: %C A270744 x r(k) %C A270744 1 1/tau^k A270744 %C A270744 1 k/tau^k A270745 %C A270744 1 2/e^k A270746 %C A270744 1 4/Pi^k A270747 %C A270744 1 2/log(k+1) A270748 %C A270744 1 k/log(k+1) A270749 %C A270744 1 1/(k*log(k+1)) A270750 %C A270744 1 1/(k*tau) A270751 %C A270744 1 1/(k*e) A270752 %C A270744 1 1/(k*sqrt(2)) A270916 %F A270744 a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). %F A270744 r(1)/a(1) + ... + r(n)/a(n) + ... = 1. %e A270744 a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1; %e A270744 a(2) = ceiling(r(2)/(1 - r(1)/1)) = 2; %e A270744 a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2)) = 2. %e A270744 The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.618..., 0.809..., 0.927..., 0.975..., 0.998..., 0.999967... . %t A270744 $MaxExtraPrecision = Infinity; z = 13; %t A270744 r[k_] := N[1/GoldenRatio^k, 1000]; f[x_, 0] = x; %t A270744 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270744 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270744 x = 1; Table[n[x, k], {k, 1, z}] %t A270744 N[Sum[r[k]/n[x, k], {k, 1, 13}], 200] %Y A270744 Cf. A001620, A270745, A094214, A269993. %K A270744 nonn,easy %O A270744 1,2 %A A270744 _Clark Kimberling_, Apr 07 2016