A270745 (r,1)-greedy sequence, where r(k) = k/tau^k and tau = golden ratio.
1, 3, 6, 63, 18292, 822680526, 810795400558456607, 3059608561526409532580548135921262544, 41330361304323764432512049819825720283867354602583921458622085452146872094
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1; a(2) = ceiling(r(2)/(1 - r(1)/1)) = 3; a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/3)) = 6. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.618..., 0.872..., 0.990..., 0.975..., 0.999..., 0.99999999959...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 13; r[k_] := N[k/GoldenRatio^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 13}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments