This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270747 #13 Mar 06 2025 08:17:55 %S A270747 2,2,1,2,2,1,3,7,71,3131,5821925,14364035515947, %T A270747 451397201144015321568515204, %U A270747 88020328073777548345010277436911545872870466008026310,4344173888544359227731947461270153179826227998155726069662805370800638822815760136590246135744249701337368 %N A270747 (r,1)-greedy sequence, where r(k) = 4/Pi^k. %C A270747 Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences. %F A270747 a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). %F A270747 r(1)/a(1) + ... + r(n)/a(n) + ... = 1. %e A270747 a(1) = ceiling(r(1)) = ceiling(4/Pi) = ceiling(1.273...) = 2; %e A270747 a(2) = ceiling(r(2)/(1 - r(1)/2)) = 2; %e A270747 a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/2)) = 1. %e A270747 The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.636..., 0.839..., 0.968..., 0.988..., 0.995..., 0.9994... %t A270747 $MaxExtraPrecision = Infinity; z = 16; %t A270747 r[k_] := N[4/Pi^k, 1000]; f[x_, 0] = x; %t A270747 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270747 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270747 x = 1; Table[n[x, k], {k, 1, z}] %t A270747 N[Sum[r[k]/n[x, k], {k, 1, 18}], 200] %Y A270747 Cf. A001620, A270744, A049541. %K A270747 nonn,easy %O A270747 1,1 %A A270747 _Clark Kimberling_, Apr 09 2016