This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270749 #13 Mar 06 2025 08:17:59 %S A270749 2,7,117,28231,934841727,1391154929853413822, %T A270749 3358221400639080017571595039208647108, %U A270749 84149630763494298099512446622134485046922136023978562834130778814722933257 %N A270749 (r,1)-greedy sequence, where r(k) = k/log(k+1). %C A270749 Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences. %F A270749 a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). %F A270749 r(1)/a(1) + ... + r(n)/a(n) + ... = 1. %e A270749 a(1) = ceiling(r(1)) = ceiling(1/log(2)) = ceiling(1.442...) = 2; %e A270749 a(2) = ceiling(r(2)/(1 - r(1)/2)) = 7; %e A270749 a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/7)) = 117. %e A270749 The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.721..., 0.981..., 0.99991... %t A270749 $MaxExtraPrecision = Infinity; z = 16; %t A270749 r[k_] := N[k/Log[k + 1], 1000]; f[x_, 0] = x; %t A270749 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270749 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270749 x = 1; Table[n[x, k], {k, 1, z}] %t A270749 N[Sum[r[k]/n[x, k], {k, 1, 18}], 200] %Y A270749 Cf. A001620, A270744. %K A270749 nonn,easy %O A270749 1,1 %A A270749 _Clark Kimberling_, Apr 09 2016