This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270750 #13 Mar 06 2025 08:18:04 %S A270750 2,2,5,52,7132,657650603,642344866115572775, %T A270750 833790618410287382945149122154404558, %U A270750 1229679779588111283437146138551802288646488858072438842199407751052675116 %N A270750 (r,1)-greedy sequence, where r(k) = 1/(k*log(k+1)). %C A270750 Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences. %F A270750 a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). %F A270750 r(1)/a(1) + ... + r(n)/a(n) + ... = 1. %e A270750 a(1) = ceiling(r(1)) = ceiling(1/log(2)) = ceiling(1.442...) = 2; %e A270750 a(2) = ceiling(r(2)/(1 - r(1)/2)) = 2; %e A270750 a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/2)) = 5. %e A270750 The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.721..., 0.948..., 0.996... %t A270750 $MaxExtraPrecision = Infinity; z = 16; %t A270750 r[k_] := N[1/(k*Log[k + 1]), 1000]; f[x_, 0] = x; %t A270750 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270750 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270750 x = 1; Table[n[x, k], {k, 1, z}] %t A270750 N[Sum[r[k]/n[x, k], {k, 1, 18}], 200] %Y A270750 Cf. A001620, A270744. %K A270750 nonn,easy %O A270750 1,1 %A A270750 _Clark Kimberling_, Apr 09 2016