This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270754 #16 Mar 08 2025 18:18:26 %S A270754 90438,258918,293862,385740,426162,532950,1073952,1317192,1318410, %T A270754 1401318,1565382,1894338,1986168,2174772,2612790,2764788,3390900, %U A270754 3450048,3618960,3797250,3961722,3973062,4074870,4306230,4648068,4917360,5351010,5460492 %N A270754 Numbers n such that n - 31, n - 1, n + 1 and n + 31 are consecutive primes. %C A270754 This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753. %C A270754 The terms ending in 0 are divisible by 30 (cf. A249674). %C A270754 The terms ending in 2 and 8 are congruent to 12 mod 30 and 18 mod 30 respectively. %C A270754 The numbers n - 31 and n + 1 belong to A049481 (p and p + 30 are primes) and A124596 (p where p + 30 is the next prime). %C A270754 The numbers n - 31 and n - 1 belong to A049489 (p and p + 32 are primes). %H A270754 Karl V. Keller, Jr., <a href="/A270754/b270754.txt">Table of n, a(n) for n = 1..100000</a> %H A270754 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimes.html">Twin Primes</a> %e A270754 90438 is the average of the four consecutive primes 90407, 90437, 90439, 90469. %e A270754 258918 is the average of the four consecutive primes 258887, 258917, 258919, 258949. %o A270754 (Python) %o A270754 from sympy import isprime,prevprime,nextprime %o A270754 for i in range(0,1000001,6): %o A270754 if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-31 and nextprime(i+1) == i+31 : print (i,end=', ') %Y A270754 Cf. A014574, A077800 (twin primes), A249674, A256753. %K A270754 nonn %O A270754 1,1 %A A270754 _Karl V. Keller, Jr._, Mar 22 2016