A270783 Numbers of the form p^2 + q^2 + r^2 + s^2 = a^2 + b^2 + c^2 for some primes p, q, r, and s and some integers a, b, and c.
16, 21, 26, 36, 37, 42, 52, 58, 61, 66, 68, 76, 82, 84, 100, 106, 108, 116, 132, 133, 138, 148, 154, 164, 172, 178, 180, 181, 186, 196, 202, 204, 212, 226, 228, 236, 244, 250, 260, 268, 276, 292, 298, 300, 301, 306, 308, 322, 324, 332, 340
Offset: 1
Keywords
Examples
a(1) = 16 = 2^2 + 2^2 + 2^2 + 2^2 = 0^2 + 0^2 + 4^2.
Links
- Griffin N. Macris, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Sage
n=340 #change for more terms P=prime_range(1,ceil(sqrt(n))) S=cartesian_product_iterator([P,P,P,P]) A=list(Set([sum(i^2 for i in y) for y in S if sum(i^2 for i in y)<=n])) A.sort() T=[sum(i^2 for i in y) for y in cartesian_product_iterator([[0..ceil(sqrt(n))],[0..ceil(sqrt(n))],[0..ceil(sqrt(n))]])] [x for x in A if x in T] # Tom Edgar, Mar 24 2016
Comments