cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270788 Unique fixed point of the 3-symbol Fibonacci morphism phi-hat_2.

Original entry on oeis.org

1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Comments

Fixed point of the morphism phi-hat_2 given by 1 --> 12, 2 --> 3, 3 --> 12. [Joerg Arndt, Apr 10 2016]
This sequence is the [0->12, 1->3]-transform of the Fibonacci word A003849: if T(0):=12, T(1):=3, then one proves easily with induction that T(phi_1^n(0)) = phi-hat_2^{n+1}(1), and T(phi_1^n(1)) = phi-hat_2^{n+1}(2), where phi_1 denotes the Fibonacci morphism given by 0 --> 01, 1 --> 0. - Michel Dekking, Dec 29 2019

Crossrefs

Cf. A159917 (same sequence if we map 1->2, 2->0, 3->1).

Programs

  • Maple
    with(ListTools);
    psi:=proc(S)
    Flatten(subs( {1=[1,2], 2=[3], 3=[1,2]}, S));
    end;
    S:=[1];
    for n from 1 to 10 do S:=psi(S): od:
    S;
  • Mathematica
    m = 121; (* number of terms required *)
    S[1] = {1};
    S[n_] := S[n] = SubstitutionSystem[{1 -> {1, 2}, 2 -> {3}, 3 -> {1, 2}}, S[n-1]];
    For[n = 2, True, n++, If[PadRight[S[n], m] == PadRight[S[n-1], m], Print["n = ", n]; Break[]]];
    Take[S[n], m] (* Jean-François Alcover, Feb 15 2023 *)
  • Python
    from math import isqrt
    def A270788(n): return (1,3,2)[((m:=(n+2+isqrt(5*(n+2)**2)>>1)-n-2)+isqrt(5*m**2)>>1)-((k:=(n+1+isqrt(5*(n+1)**2)>>1)-n-1)+isqrt(5*k**2)>>1)] # Chai Wah Wu, May 22 2025

Formula

Let A(n)=floor(n*tau), B(n)=n+floor(n*tau), i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. Then a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(k) for some k; a(n)=3 if n=A(B(k)) for some k. - Michel Dekking, Dec 27 2016

Extensions

More terms from Joerg Arndt, Apr 10 2016
Offset changed to 1 by Michel Dekking, Dec 27 2016