This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270790 #29 Apr 20 2016 11:46:58 %S A270790 1,21,11,143,88179,111435,111435,1361270295,1137235,9945637, %T A270790 16009448637,19293438101,3607872924887,2630885818709841, %U A270790 195084537038811,45500599374052095,1472444896343699846295,1997334750675075735,145805436799280528655,107268833547674677179 %N A270790 Multiplier of polynomial P_n(x) arising from RNA combinatorics. %H A270790 Gheorghe Coserea, <a href="/A270790/b270790.txt">Table of n, a(n) for n = 1..100</a> %H A270790 R. C. Penner, <a href="http://dx.doi.org/10.1090/bull/1524">Moduli Spaces and Macromolecules</a>, Bull. Amer. Math. Soc., 53 (2015), 217-268. See p. 259. %F A270790 a(g) * P_g(0) = A035319(g) = (4*g-1)!!/(2*g+1), where P_g(x) is the polynomial associated with row g of the triangle A270791. %o A270790 (PARI) %o A270790 G = 20; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G); %o A270790 Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1); %o A270790 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270790 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270790 Quadric({x=1}) = { %o A270790 Qset(0, 0, x); %o A270790 for (n = 1, Qn(), for (g = 0, gmax(n), %o A270790 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270790 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270790 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270790 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270790 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270790 }; %o A270790 Quadric('x + O('x^(F+1))); %o A270790 Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x)); %o A270790 P(g) = { %o A270790 my(x = 'x + O('x^(G+2))); %o A270790 return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x)); %o A270790 }; %o A270790 vector(G, g, content(P(g))) \\ _Gheorghe Coserea_, Apr 17 2016 %Y A270790 Cf. A035309, A035319, A270791. %K A270790 nonn,easy %O A270790 1,2 %A A270790 _N. J. A. Sloane_, Mar 28 2016 %E A270790 More terms from _Gheorghe Coserea_, Apr 17 2016