A270800 Septic artiads: primes p congruent to 1 mod 14 for which all solutions of the congruence x^3 + x^2 - 2x - 1 == 0 (mod p) are 7th power residues.
14197, 21617, 23801, 24977, 25999, 34763, 37549, 41959, 42407, 45053, 45599, 54713, 55987, 56099, 60271, 61657, 63463, 66067, 72577, 75307, 76343, 76777, 79283, 83357, 88397, 90469, 91309, 99611, 107927, 111217, 111301, 111791, 124699, 126127, 131251, 132287
Offset: 1
Keywords
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131. See page 126 (but beware errors).
- E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy]
Crossrefs
Cf. A001583.
Programs
-
Sage
def is_septic_artiad(n) : if not (n % 14 == 1 and is_prime(n)) : return False R.
= PolynomialRing(GF(n)) return all(r[0]^((n-1)//7) == 1 for r in (t^3 + t^2 - 2*t - 1).roots()) # Eric M. Schmidt, Apr 02 2016
Extensions
Definition added and sequence extended and corrected by Eric M. Schmidt, Apr 02 2016