cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270800 Septic artiads: primes p congruent to 1 mod 14 for which all solutions of the congruence x^3 + x^2 - 2x - 1 == 0 (mod p) are 7th power residues.

Original entry on oeis.org

14197, 21617, 23801, 24977, 25999, 34763, 37549, 41959, 42407, 45053, 45599, 54713, 55987, 56099, 60271, 61657, 63463, 66067, 72577, 75307, 76343, 76777, 79283, 83357, 88397, 90469, 91309, 99611, 107927, 111217, 111301, 111791, 124699, 126127, 131251, 132287
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2016

Keywords

Crossrefs

Cf. A001583.

Programs

  • Sage
    def is_septic_artiad(n) :
        if not (n % 14 == 1 and is_prime(n)) : return False
        R. = PolynomialRing(GF(n))
        return all(r[0]^((n-1)//7) == 1 for r in (t^3 + t^2 - 2*t - 1).roots())
    # Eric M. Schmidt, Apr 02 2016

Extensions

Definition added and sequence extended and corrected by Eric M. Schmidt, Apr 02 2016