A270815 Let M be the n-th Giuga number (see A007850); a(n) = sum of (M/p - 1)/p for primes p dividing M.
11, 321, 657, 24699, 824438641, 9331106993, 165242994898683, 5626813041698235, 210318566007979643, 90916134718317480897884289, 206287562744685037912181145873, 729990278282182004516138224533969
Offset: 1
Examples
Prime factors of 30 are 2, 3 and 5: (30/2 - 1)/2 + (30/3 - 1)/3 + (30/5 - 1)/5 = 7 + 3 + 1 = 11.
Programs
-
Maple
with(numtheory): P:=proc(q) local n,x; x:=[30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506]; for n from 1 to nops(x) do print(add((x[n]/k-1)/k,k=factorset(x[n]))); od; end: P(1);
Comments