cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270820 Prime powers p^k (p prime, k > 1) that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.

Original entry on oeis.org

343, 12167, 16807, 29791, 103823, 357911, 493039, 823543, 1092727, 2048383, 3442951, 4657463, 6436343, 6967871, 7880599, 11089567, 13651919, 18191447, 19902511, 28629151, 30080231, 40353607, 46268279, 49430863, 56181887, 80062991, 84604519, 99252847
Offset: 1

Views

Author

Altug Alkan, Mar 23 2016

Keywords

Comments

Proper prime powers that are the sum of 4 but no fewer nonzero squares.
This sequence lists the numbers of the form A007522(n)^(2*k+1) where n,k > 0.
Subsequence of A267321.
Terms are 7^3, 23^3, 7^5, 31^3, 47^3, 71^3, 79^3, 7^7, 103^3, 127^3, 151^3, 167^3, 23^5, 191^3, 199^3, ...

Examples

			16807 is a term because 16807 = 7^5 and there is no integer values of x, y and z for the equation 7^5 = x^2 + y^2 + z^2.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; Select[TakeWhile[Union@ Flatten@ Map[Prime[Range@ nn]^# &, Range[2, Floor[Log2[PrimePi@ nn]^2]]], # <= Prime[nn]^2 &], ! Resolve[Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers]]] &] (* Michael De Vlieger, Mar 23 2016 *)
  • PARI
    isA004215(n) = {my(fouri, j) ; fouri=1 ; while(n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if(j % 8==0, return(1)) ; ) ; fouri *= 4 ; ) ; return(0) ; }
    forcomposite(n=4, 1e7, if(isA004215(n) && isprimepower(n), print1(n, ", ")));