cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270857 Decimal expansion of Sum_{n >= 1} G_n/n^2, where G_n are Gregory's coefficients.

This page as a plain text file.
%I A270857 #21 Jul 05 2022 09:53:20
%S A270857 4,8,2,6,4,4,2,2,1,6,2,0,4,6,2,6,1,2,3,7,9,4,2,8,3,9,1,1,4,8,5,7,5,7,
%T A270857 7,3,9,7,0,1,2,0,3,9,6,2,7,5,6,6,5,6,7,0,5,0,2,3,0,1,6,5,1,6,2,9,5,1,
%U A270857 5,8,0,9,1,0,7,1,8,2,0,0,9,7,6,2,4,3,0,1,7,9,5,1,1,6,5,3,4,3,0,1,5,3,7,3
%N A270857 Decimal expansion of Sum_{n >= 1} G_n/n^2, where G_n are Gregory's coefficients.
%C A270857 Gregory's coefficients (A002206 and A002207) are also known as (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind and Cauchy numbers of the first kind. First few coefficients are G_1=+1/2, G_2=-1/12, G_3=+1/24, G_4=-19/720, etc.
%H A270857 G. C. Greubel, <a href="/A270857/b270857.txt">Table of n, a(n) for n = 0..1000</a>
%F A270857 Equals integral_{x=0..1} (li(1+x) - gamma - log(x))/x dx, where li(x) is the integral logarithm.
%e A270857 0.4826442216204626123794283911485757739701203962756656...
%p A270857 evalf(int((Li(1+x)-gamma-ln(x))/x, x = 0..1), 120);
%t A270857 RealDigits[N[Integrate[(LogIntegral[1+x]-EulerGamma-Log[x])/x,{x,0,1}],150]][[1]]
%Y A270857 Cf. A270859, A269330, A001620, A002206, A002207, A195189.
%K A270857 nonn,cons
%O A270857 0,1
%A A270857 _Iaroslav V. Blagouchine_, Mar 24 2016
%E A270857 Mathematica program corrected by _Harvey P. Dale_, Jul 05 2022