This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270868 #20 Sep 08 2022 08:46:16 %S A270868 2,23,92,263,614,1247,2288,3887,6218,9479,13892,19703,27182,36623, %T A270868 48344,62687,80018,100727,125228,153959,187382,225983,270272,320783, %U A270868 378074,442727,515348,596567,687038,787439,898472,1020863,1155362,1302743,1463804,1639367 %N A270868 a(n) = n^4 + 3*n^3 + 8*n^2 + 9*n + 2. %H A270868 Vincenzo Librandi, <a href="/A270868/b270868.txt">Table of n, a(n) for n = 0..1000</a> %H A270868 Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015 (page 19, 5th row; page 21, 4th row). %H A270868 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A270868 G.f.: (2+13*x-3*x^2+13*x^3-x^4)/(1-x)^5. %F A270868 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). %F A270868 From _G. C. Greubel_, Apr 01 2016: (Start) %F A270868 a(2*m) == 0 (mod 2). %F A270868 a(4*m + 2) == 0 (mod 4). %F A270868 E.g.f.: (2 +21*x +24*x^2 +9*x^3 +x^4)*exp(x). (End) %F A270868 a(n)+a(n+2)-2*a(n+1) = 6*A033816(n+1). - _Wesley Ivan Hurt_, Apr 02 2016 %p A270868 A270868:=n->n^4 + 3*n^3 + 8*n^2 + 9*n + 2: seq(A270868(n), n=0..50); # _Wesley Ivan Hurt_, Apr 01 2016 %t A270868 Table[n^4 + 3 n^3 + 8 n^2 + 9 n + 2, {n, 0, 40}] %o A270868 (Magma) [n^4+3*n^3+8*n^2+9*n+2: n in [0..40]]; %Y A270868 Cf. A033816, A270867. %K A270868 nonn,easy %O A270868 0,1 %A A270868 _Vincenzo Librandi_, Apr 01 2016