This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270880 #28 Aug 02 2018 15:13:44 %S A270880 1,0,1,0,1,3,0,1,28,28,0,1,400,1680,840,0,1,10416,168640,277760,83328, %T A270880 0,1,525792,36053248,159989760,139991040,27998208,0,1,51116992, %U A270880 17811244032,209056841728,419919790080,227569434624,32509919232 %N A270880 Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2). %H A270880 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018. %H A270880 David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016. %H A270880 David Ellerman, <a href="http://arxiv.org/abs/1604.01087">The Quantum Logic of Direct-Sum Decompositions</a>, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5. %F A270880 T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - _Geoffrey Critzer_, May 18 2017 (after formula given in first Ellerman link above). %e A270880 Triangle begins: %e A270880 1; %e A270880 0, 1; %e A270880 0, 1, 3; %e A270880 0, 1, 28, 28; %e A270880 0, 1, 400, 1680, 840; %e A270880 0, 1, 10416, 168640, 277760, 83328; %e A270880 ... %t A270880 g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* _Geoffrey Critzer_, May 18 2017 *) %Y A270880 Cf. A053601 (right diagonal), A270881 (row sums), A270882. %K A270880 nonn,tabl %O A270880 0,6 %A A270880 _Michel Marcus_, Mar 25 2016