cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270881 Row sums of triangle A270880. Number of direct-sum decompositions of a finite vector space of n dimensions over GF(2).

This page as a plain text file.
%I A270881 #32 Aug 02 2018 15:00:47
%S A270881 1,1,4,57,2921,540145,364558049,906918346689,8394259686375297,
%T A270881 291375477821572448001,38187935488350036891532801,
%U A270881 19005446750755761952317881973761,36091267618694510017592440805677594625,262587035725176662374187801686523815760228353,7345273837043092730077580223639933697831592435638273
%N A270881 Row sums of triangle A270880. Number of direct-sum decompositions of a finite vector space of n dimensions over GF(2).
%C A270881 The generating function for these numbers was first derived in Bender & Goldman. My paper derives the direct formula for the numbers for any finite vector space over GF(q) so that when q = 1, the formula gives the Bell numbers--since a direct-sum decomposition is the vector space version of a set partition. This sequence gives the numbers for q = 2. - _David P. Ellerman_, Mar 26 2016
%H A270881 Edward A. Bender, and Jay R. Goldman, <a href="https://www.jstor.org/stable/24890130">Enumerative Uses of Generating Functions</a>, Indiana University Mathematics Journal 20 (8) (1971) 753-65.
%H A270881 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.
%H A270881 David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016.
%H A270881 David Ellerman, <a href="http://arxiv.org/abs/1604.01087">The Quantum Logic of Direct-Sum Decompositions</a>, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
%t A270881 g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; Table[Total[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}]], {n, 1, 15}] (* _Geoffrey Critzer_, May 18 2017 *)
%Y A270881 Cf. A270880.
%K A270881 nonn
%O A270881 0,3
%A A270881 _Michel Marcus_, Mar 25 2016
%E A270881 Name extended by _David P. Ellerman_, Mar 26 2016
%E A270881 a(8)-a(14) from _Geoffrey Critzer_, May 18 2017