cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270882 Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.

This page as a plain text file.
%I A270882 #44 Dec 03 2024 12:41:53
%S A270882 1,0,1,0,1,2,0,1,16,12,0,1,176,560,224,0,1,3456,40000,53760,13440,0,1,
%T A270882 128000,5848832,20951040,15554560,2666496,0,1,9115648,1934195712,
%U A270882 17826414592,30398054400,14335082496,1791885312,0,1,1259921408,1510821195776,37083513880576,134908940386304,133854174117888,43693331447808,4161269661696
%N A270882 Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.
%H A270882 Jinyuan Wang, <a href="/A270882/b270882.txt">Rows n = 0..10 of triangle, flattened</a>
%H A270882 David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016.
%H A270882 David Ellerman, <a href="http://arxiv.org/abs/1604.01087">The Quantum Logic of Direct-Sum Decompositions</a>, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
%F A270882 Recurrence: a(n) = Sum_{k=0..n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k,m-1) where D_q(k,m-1) is given by A270880 for q = 2 and where the q-binomial for q = 2 is given by A022166. This formula is the q-analog of summation formula for the Stirling numbers of the second kind A008277 so when q = 1, it reduces to that formula. - _David P. Ellerman_, Mar 26 2016
%e A270882 Triangle begins:
%e A270882   1;
%e A270882   0, 1;
%e A270882   0, 1,      2;
%e A270882   0, 1,     16,      12;
%e A270882   0, 1,    176,     560,      224;
%e A270882   0, 1,   3456,   40000,    53760,    13440;
%e A270882   0, 1, 128000, 5848832, 20951040, 15554560, 2666496;
%e A270882   ...
%t A270882 (* about 40 seconds on a laptop computer *) g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; d[k_, m_] :=Map[PadRight[#, 10] &,Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {j}]]], {j, 1, n}], {n, 1, 10}]][[k, m]];d[0, m_] := If[m == 0, 1, 0]; d[k_, 0] := If[k == 0, 1, 0];s[n_, m_] :=Sum[FunctionExpand[QBinomial[n - 1, k, 2]]*2^(k (n - k))*d[k, m - 1], {k, 0, n - 1}]; Table[Table[s[n, m], {m, 1, n}], {n, 1,7}] (* _Geoffrey Critzer_, May 20 2017 *)
%Y A270882 Cf. A270880, A270883 (row sums).
%Y A270882 The main diagonal appears to match A377642. - _Nikita Babich_, Nov 17 2024
%K A270882 nonn,tabl
%O A270882 0,6
%A A270882 _Michel Marcus_, Mar 25 2016
%E A270882 Name extended by _David P. Ellerman_, Mar 26 2016
%E A270882 Row 8 from _Geoffrey Critzer_, May 20 2017