cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270920 Number of ordered ways to write n as the sum of a positive triangular number, a positive square, and a fifth power whose absolute value does not exceed n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 2, 2, 5, 5, 3, 2, 3, 4, 4, 3, 4, 6, 3, 2, 4, 3, 3, 5, 5, 3, 3, 4, 5, 6, 7, 2, 2, 4, 6, 9, 9, 7, 6, 3, 5, 4, 4, 7, 8, 6, 3, 5, 7, 8, 7, 7, 6, 6, 5, 4, 5, 7, 7, 5, 5, 6, 9, 5, 3, 5, 4, 9, 11, 10, 6, 2, 6, 4, 3, 6, 7, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 25 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 112, 770, 801, 1593, 1826, 2320, 2334, 2849, 7561.
(ii) Let T(x) = x*(x+1)/2 and pen(x) = x*(3x+1)/2. Any natural number n can be written as P(x,y) + z^5, where x, y and z are integers with |z^5| <= n, and the polynomial P(x,y) is either of the following ones: T(x)+2*T(y), T(x)+2*pen(y), x^2+pen(y), x^2+y(5y+1)/2, 2*T(x)+pen(y), pen(x)+pen(y), pen(x)+y(3y+j) (j = 1,2), pen(x)+6*T(y), pen(x)+y(7y+j)/2 (j = 1,3,5), pen(x)+y(4y+j) (j = 1,3), pen(x)+y(5y+j) (j = 1,2,3,4), pen(x)+y(13y+7)/2, x(5x+i)/2+y(3y+j) (i = 1,3; j = 1,2), x(5x+j)/2+y(7y+5)/2 (j = 1,3).

Examples

			a(1) = 1 since 1 = 1*2/2 + 1^2 + (-1)^5 with |(-1)^5| <= 1.
a(112) = 1 since 112 = 10*11/2 + 5^2 + 2^5.
a(770) = 1 since 770 = 28*29/2 + 11^2 + 3^5.
a(801) = 1 since 801 = 45*46/2 + 3^2 + (-3)^5 with |(-3)^5| < 801.
a(1593) = 1 since 1593 = 49*50/2 + 20^2 + (-2)^5 with |(-2)^5| < 1593.
a(1826) = 1 since 1826 = 55*56/2 + 23^2 + (-3)^5 with |(-3)^5| < 1826.
a(2320) = 1 since 2320 = 5*6/2 + 48^2 + 1^5.
a(2334) = 1 since 2334 = 11*12/2 + 45^2 + 3^5.
a(2849) = 1 since 2849 = 70*71/2 + 11^2 + 3^5.
a(7561) = 1 since 7561 = 97*98/2 + 53^2 + (-1)^5 with |(-1)^5| < 7561.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-(-1)^k*x^5-y^2],r=r+1],{k,0,1},{x,0,n^(1/5)},{y,1,Sqrt[n-(-1)^k*x^5]}];Print[n," ",r];Continue,{n,1,80}]