cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270923 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k^n).

This page as a plain text file.
%I A270923 #11 Apr 26 2019 05:59:14
%S A270923 1,2,10,88,1414,46648,3026028,373615284,92794268694,46265940243794,
%T A270923 44694344296430280,86689242777435107120,340600515192402995860548,
%U A270923 2624923513793602103874986688,40749869155795866122979193705136,1290021269710020392957588463834452744
%N A270923 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^(k^n).
%H A270923 Vaclav Kotesovec, <a href="/A270923/b270923.txt">Table of n, a(n) for n = 0..80</a>
%F A270923 Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...
%F A270923 a(n) = [x^n] exp(Sum_{k>=1} (sigma_(n+1)(2*k) - sigma_(n+1)(k))*x^k/(2^n*k)). - _Ilya Gutkovskiy_, Apr 26 2019
%t A270923 Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%Y A270923 Cf. A252782, A270917, A270919, A270924.
%K A270923 nonn
%O A270923 0,2
%A A270923 _Vaclav Kotesovec_, Mar 26 2016