This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270952 #18 Feb 16 2025 08:33:32 %S A270952 1,1,1,2,1,1,4,5,4,1,1,8,19,42,61,56,28,8,1,1,16,65,304,1129,3200, %T A270952 6775,10680,12600,11386,8002,4368,1820,560,120,16,1,1,32,211,1890, %U A270952 14935,97470 %N A270952 T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n. %C A270952 The n-th Boolean lattice is the set of all subsets of {1,2,...,n}, partially ordered by inclusion. %H A270952 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BooleanAlgebra.html">Boolean Algebra</a>. %e A270952 The triangle begins: %e A270952 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A270952 0 1 1 %e A270952 1 1 2 1 %e A270952 2 1 4 5 4 1 %e A270952 3 1 8 19 42 61 56 28 8 1 %e A270952 4 1 16 65 304 1129 3200 6775 10680 12600 11386 8002 4368 1820 560 120 %e A270952 5 1 32 211 1890 14935 97470 ... %e A270952 For T(2, 2) = 5: [{},{1}], [{},{2}], [{},{1,2}], [{1},{1,2}], [{2},{1,2}]. %o A270952 (Sage) %o A270952 def ConnectedSubs(n): # Returns row n of T(n, k). %o A270952 Bn = posets.BooleanLattice(n) %o A270952 counts = [0]*(2^n+1) %o A270952 for X in Subsets(range(2^n)): %o A270952 if Bn.subposet(X).is_connected(): %o A270952 counts[len(X)] += 1 %o A270952 return counts %Y A270952 Columns: A000012 (k = 0, 2^n), A000079 (k = 1, 2^n - 1), A001047 (k = 3). %K A270952 nonn,more,tabf %O A270952 0,4 %A A270952 _Danny Rorabaugh_, Mar 26 2016