cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A270928 Number of ways to write n = x*(x-1)/2 + y*(y-1)/2 + z*(z-1)/2, where 0 < x <= y <= z, and one of x, y, z is prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 4, 2, 2, 2, 2, 1, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 1, 2, 5, 1, 2, 3, 3, 4, 3, 3, 1, 5, 1, 3, 2, 3, 3, 5, 2, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 26 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for n > 0 with the only exception n = 15^2 = 225. Also, a(n) = 1 only for n = 1, 2, 4, 5, 6, 8, 11, 14, 15, 18, 20, 29, 36, 50, 53, 60, 62, 96, 117, 119, 218, 411, 540, 645, 1125, 1590, 2346, 4068.
(ii) Any positive integer can be written as p*(p-1)/2 + x*(x-1)/2 + P(y) with p prime and x and y integers, where the polynomial P(y) is either of the following ones: y*(y-1), y*(3*y+1)/2, y*(5*y+j)/2 (j = 1,3), y*(3*y+j) (j = 1,2), y*(7*y+3)/2, y*(9*y+j)/2 (j = 1,5,7), y*(5*y+j) (j = 1,3), y*(11*y+9)/2, 2*y*(3*y+j) (j = 1,2), y*(7*y+3).
(iii) Any positive integer can be written as p*(p-1)/2 + P(x,y) with p prime and x and y integers, where the polynomial P(x,y) is either of the following ones: a*x*(x-1)/2+y*(3*y+1)/2 (a = 2,3,4), x*(x-1)+y*(5*y+3)/2, b*x^2+y*(3*y+1)/2 (b = 1,2,3), x^2+y*(5*y+j)/2 (j = 1,3), x^2+y*(3*y+1), x^2+y*(7*y+j)/2 (j = 1,3,5), x^2+y*(4*y+1).
(iv) Every positive integer can be written as p*(p-1)/2+x*(3*x+1)/2+y*(3*y+1)/2 with p prime, x an nonnegative integer and y an integer. Also, for each r = 1,3, any positive integer n can be written as p*(p-1)/2+x*(3*x-1)/2+y*(5*y+r)/2, where p is a prime, and x and y are integers with x nonnegative.
Note that Gauss proved a classical assertion of Fermat which states that any natural number is the sum of three triangular numbers.
See also A270966 for a similar conjecture involving (p-1)^2 with p prime.
The conjecture that a(n) > 0 except for n = 225 appeared as Conjecture 1.2(i) of the author's JNT paper in the links.

Examples

			a(1) = 1 since 1 = 1*(1-1)/2 + 1*(1-1)/2 + 2*(2-1)/2 with 2 prime.
a(4) = 1 since 4 = 1*(1-1)/2 + 2*(2-1)/2 + 3*(3-1)/2 with 2 and 3 prime.
a(29) = 1 since 29 = 1*(1-1)/2 + 2*(2-1)/2 + 8*(8-1)/2 with 2 prime.
a(50) = 1 since 50 = 2*(2-1)/2 + 7*(7-1)/2 + 8*(8-1)/2 with 2 and 7 prime.
a(119) = 1 since 119 = 8*(8-1)/2 + 9*(9-1)/2 + 11*(11-1)/2 with 11 prime.
a(411) = 1 since 411 = 16*(16-1)/2 + 16*(16-1)/2 + 19*(19-1)/2 with 19 prime.
a(1125) = 1 since 1125 = 3*(3-1)/2 + 34*(34-1)/2 + 34*(34-1)/2 with 3 prime.
a(1590) = 1 since 1590 = 7*(7-1)/2 + 37*(37-1)/2 + 43*(43-1)/2 with 7, 37 and 43 prime.
a(2346) = 1 since 2346 = 6*(6-1)/2 + 16*(16-1)/2 + 67*(67-1)/2 with 67 prime.
a(4068) = 1 since 4068 = 7*(7-1)/2 + 34*(34-1)/2 + 84*(84-1)/2 with 7 prime.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-x(x-1)/2-y(y-1)/2]&&(PrimeQ[x]||PrimeQ[y]||PrimeQ[(Sqrt[8(n-x(x-1)/2-y(y-1)/2)+1]+1)/2]),r=r+1],{x,1,(Sqrt[8n/3+1]+1)/2},{y,x,(Sqrt[8(n-x(x-1)/2)/2+1]+1)/2}];Print[n," ",r];Continue,{n,1,70}]
Showing 1-1 of 1 results.