This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270996 #26 Nov 30 2016 01:01:58 %S A270996 2,1,3,10,17,7,101,149,151,47,246,51,26,97,8474,1685,8479,727,1861, %T A270996 241,843,22026,849,3178,2526,10826,30247,22019,217077,190453,813251, %U A270996 55779,183553,5045,580847,826823 %N A270996 T(i, j) = k is the least squarefree number with a run of exactly i>=0 nonsquarefree numbers immediately preceding k and a run of exactly j>=0 nonsquarefree numbers immediately succeeding k. %C A270996 The sequence a(n) = T(i, j) represents the traversal of this matrix by its successive rising antidiagonals. %C A270996 a(2*i*(i+1)) = A270344(i), for all i >= 0. %H A270996 Hartmut F. W. Hoft, <a href="/A270996/b270996.txt">Numbers in the first 11 antidiagonals of the matrix.</a> %e A270996 a(13) = T(1, 3) = 97 since 96, 98, 99 and 100 are nonsquarefree while 95, 97, and 101 are squarefree, and 97 is the smallest number surrounded by the 1,3 pattern. %e A270996 The matrix T(i, j) with first 8 complete antidiagonals together with some additional elements including the first 7 elements on the diagonal which are A270344(0)..A270344(6): %e A270996 ------------------------------------------------------------------------- %e A270996 i\j 0 1 2 3 4 5 6 7 %e A270996 ------------------------------------------------------------------------- %e A270996 0: 2 3 7 47 8474 843 22019 826823 %e A270996 1: 1 17 151 97 241 30247 580847 217069 %e A270996 2: 10 149 26 1861 10826 5045 204322 16825126 %e A270996 3: 101 51 727 2526 183553 1944347 28591923 43811049 %e A270996 4: 246 8479 3178 55779 5876126 19375679 67806346 %e A270996 5: 1685 849 813251 450553 29002021 8061827 2082929927 %e A270996 6: 22026 190453 200854 4100277 97447622 245990821 8996188226 %e A270996 7: 217077 826831 7507930 90557979 %e A270996 T(6, 5) = 245990821, T(5, 6) = 2082929927, and all numbers in antidiagonal 11 are larger than 10^8. %t A270996 (* The function computes the least number in the specified interval *) %t A270996 nsfRun[n_] := Module[{i=n}, While[!SquareFreeQ[i], i++]; i-n] %t A270996 a270996[{low_, high_},{widthL_, widthR_}] := Module[{i=low, r, s, first=0}, While[i<=high, r=nsfRun[i]; If[r != widthL, i+=r+1, s=nsfRun[i+r+1]; If[s != widthR, If[s != widthL, i+=r+s+2, i+=r+1], first=i+r; i=high+1]]]; first] %t A270996 a270996[{0, 5000},{2, 3}] (* computes a(18) = T(2, 3) *) %Y A270996 Cf. A005117, A007675, A068088, A073247, A073248, A073251, A228649, A268330-A268334, A270344. %K A270996 nonn,tabl %O A270996 0,1 %A A270996 _Hartmut F. W. Hoft_, Mar 28 2016