This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270997 #21 Feb 17 2022 00:28:11 %S A270997 1,3,10,17,23,29,33,43,53,61,79,101,103,107,113,127,131,139,157,173, %T A270997 179,181,191,199,211,233,251,257,263,269,277,283,311,313,337,347,367, %U A270997 373,385,389,419,433,439,443,467,491,503,521,523,547,561,563,569,571,599,601,607,641,647,649,653,659 %N A270997 Numbers k such that k | A006190(k-1). %C A270997 This sequence appears to generate many prime numbers. %C A270997 The first few composite terms in this sequence are 10, 33, 385, 561, 649, ... %C A270997 Contains all members of A038883 except 13. - _Robert Israel_, Jun 03 2019 %C A270997 That is, contains all primes which are congruent to +-1, +-3 or +-4 (mod 13). - _M. F. Hasler_, Feb 16 2022 %H A270997 Robert Israel, <a href="/A270997/b270997.txt">Table of n, a(n) for n = 1..10000</a> %e A270997 10 is a term because A006190(9) = 12970 is divisible by 10. %p A270997 M:= <<3,1>|<1,0>>: %p A270997 filter:= proc(n) uses LinearAlgebra[Modular]; %p A270997 local A; %p A270997 A:= Mod(n,M,integer); %p A270997 MatrixPower(n,A,n-1)[1,2]=0 %p A270997 end proc: %p A270997 filter(1):= true: %p A270997 select(filter, [$1..659]); # _Robert Israel_, Jun 03 2019 %t A270997 nn = 660; s = LinearRecurrence[{3, 1}, {0, 1}, nn]; Select[Range@ nn, Divisible[s[[#]], #] &](* _Michael De Vlieger_, Mar 28 2016, after _Harvey P. Dale_ at A006190 *) %o A270997 (PARI) a006190(n) = ([1, 3; 1, 2]^n)[2, 1]; %o A270997 for(n=1, 1e3, if(Mod(a006190(n-1), n) == 0, print1(n, ", "))); %Y A270997 Cf. A006190, A038883, A270951. %K A270997 nonn %O A270997 1,2 %A A270997 _Altug Alkan_, Mar 28 2016