This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271025 #24 Dec 02 2020 08:28:30 %S A271025 1,1,1,2,2,1,5,5,3,1,14,15,10,4,1,42,51,37,17,5,1,132,188,150,77,26,6, %T A271025 1,429,731,654,371,141,37,7,1,1430,2950,3012,1890,798,235,50,8,1,4862, %U A271025 12235,14445,10095,4706,1539,365,65,9,1,16796,51822,71398,56040,28820,10392,2726,537,82,10,1 %N A271025 A(n, k) is the n-th binomial transform of the Catalan sequence (A000108) evaluated at k. Array read by descending antidiagonals for n >= 0 and k >= 0. %C A271025 Interestingly, the determinant of the n X n array of entries of the form A(i,j) is equal to the (n-1)-th superfactorial number (see A000178). %C A271025 As indicated in A104455, the k-th binomial transform of A000108 will have: %C A271025 o.g.f.: (1-sqrt((1-(k+4)*x)/(1-k*x)))/(2*x), %C A271025 e.g.f.: exp((k+2)*x)*(BesselI(0,2x) - BesselI(1,2x)) and %C A271025 a(n) = Sum_{i=0..n} binomial(n, i)*CatalanNumber(i)*k^(n-i). %C A271025 The columns of this array are polynomial integer sequences. The successive polynomials corresponding to the columns of this array are: p0(n) = 1, p1(n) = n + 1, p2(n) = n^2 + 2n + 2, p3(n) = n^3 + 3*n^2 + 6*n + 5, p4(n) = n^4 + 4*n^3 + 12*n^2 + 20*n + 14, and so forth. The coefficients of these successive polynomials form a number triangle, which is given by A098474. %F A271025 A(0,j) = A000108(j). %F A271025 A(i,j) = Sum_{k=0..j} binomial(j,k)*A(i-1,k) for i >= 1. %F A271025 A(i,j) = Sum_{k=0..j} binomial(j,k)*A000108(k)*i^(j-k). %F A271025 From _Peter Luschny_, Jan 27 2020: (Start) %F A271025 A(n,k) = n^k*hypergeom([1/2, -k], [2], -4/n) for n >= 1. %F A271025 A(n,k) = (2/Pi)*Integral_{x=-1..1}(k + 4*x^2)^(n - k)*sqrt(1 - x^2). (End) %e A271025 The array given by integers of the form A(n,k) is illustrated below: %e A271025 [0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... %e A271025 [1] 1, 2, 5, 15, 51, 188, 731, 2950, 12235, ... %e A271025 [2] 1, 3, 10, 37, 150, 654, 3012, 14445, 71398, ... %e A271025 [3] 1, 4, 17, 77, 371, 1890, 10095, 56040, 320795, ... %e A271025 [4] 1, 5, 26, 141, 798, 4706, 28820, 182461, 1188406, ... %e A271025 [5] 1, 6, 37, 235, 1539, 10392, 72267, 516474, 3783115, ... %e A271025 [6] 1, 7, 50, 365, 2726, 20838, 162996, 1303485, 10642310, ... %e A271025 [7] 1, 8, 65, 537, 4515, 38654, 337007, 2991340, 27013723, ... %e A271025 [8] 1, 9, 82, 757, 7086, 67290, 648420, 6340365, 62893270, ... %e A271025 [9] 1, 10, 101, 1031, 10643, 111156, 1174875, 12568686, 136080971, ... %e A271025 Seen as a triangle: %e A271025 1 %e A271025 1, 1 %e A271025 2, 2, 1 %e A271025 5, 5, 3, 1 %e A271025 14, 15, 10, 4, 1 %e A271025 42, 51, 37, 17, 5, 1 %e A271025 132, 188, 150, 77, 26, 6, 1 %e A271025 429, 731, 654, 371, 141, 37, 7, 1 %e A271025 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1 %p A271025 A := (n, k) -> (2/Pi)*int((k+4*x^2)^(n-k)*sqrt(1 - x^2), x=-1..1): %p A271025 for n from 0 to 9 do seq(A(n,k), k=0..n) od; # _Peter Luschny_, Jan 27 2020 %t A271025 A000108[n_]:= Binomial[2*n,n]/(n+1) ; %t A271025 T[i_,j_]: Sum[Binomial(j,k)*A000108(k)*i^(j-k), {k,0,j}] ; %t A271025 A[0, k_] := CatalanNumber[k]; A[n_, k_] := n^k*Hypergeometric2F1[1/2, -k, 2, -4/n]; %t A271025 Table[A[n, k], {n, 0, 6}, {k, 0, 8}] (* _Peter Luschny_, Jan 27 2020 *) %o A271025 (Sage) def A000108(n): return binomial(2*n,n)/(n+1) ; %o A271025 def T(i,j): return sum(binomial(j,k)*A000108(k)*i^(j-k) for k in range(j+1)) %Y A271025 Cf. A098474, A000178. Rows 0-5: A000108, A007317, A064613, A104455, A104498, A154623. Columns 0-3: A000012, A000027, A002522, A005491. %K A271025 nonn,tabl,easy %O A271025 0,4 %A A271025 _John M. Campbell_, Mar 28 2016