A271035 Number of 3 X 3 X 3 triangular 0..n arrays with some element less than a w, nw or ne neighbor exactly once.
10, 72, 294, 896, 2268, 5040, 10164, 19008, 33462, 56056, 90090, 139776, 210392, 308448, 441864, 620160, 854658, 1158696, 1547854, 2040192, 2656500, 3420560, 4359420, 5503680, 6887790, 8550360, 10534482, 12888064, 15664176, 18921408
Offset: 1
Keywords
Examples
Some solutions for n=4: ....1......4......0......3......0......0......0......1......3......1......0 ...0.1....2.4....2.4....0.4....2.1....0.0....0.0....0.2....0.3....1.1....2.2 ..3.3.3..4.4.4..1.4.4..3.4.4..2.2.2..2.2.1..2.3.0..1.3.4..3.3.3..0.2.2..4.2.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A271034.
Formula
Empirical: a(n) = (1/60)*n^6 + (7/30)*n^5 + (5/4)*n^4 + (19/6)*n^3 + (56/15)*n^2 + (8/5)*n.
Conjectures from Colin Barker, Jan 30 2019: (Start)
G.f.: 2*x*(5 + x) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)