This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271040 #26 Jul 06 2024 10:30:31 %S A271040 0,0,0,0,0,0,10,70,280,840,2100,4620,9240,17160,30030,50050,80080, %T A271040 123760,185640,271320,387600,542640,746130,1009470,1345960,1771000, %U A271040 2302300,2960100,3767400,4750200,5937750,7362810,9061920,11075680,13449040,16231600,19477920 %N A271040 Number of different 3 against 3 matches given n players. %C A271040 Given n players there are a(n) different ways of arranging those players in a 3 against 3 contest. %C A271040 Number of ways to select two disjoint subsets of size 3 from a set of n elements. - _Joerg Arndt_, Mar 29 2016 %H A271040 Colin Barker, <a href="/A271040/b271040.txt">Table of n, a(n) for n = 0..1000</a> %H A271040 Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 9. %H A271040 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A271040 a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/72. %F A271040 a(n) = binomial(n,3) * binomial(n-3,3) / 2. - _Joerg Arndt_, Mar 29 2016 %F A271040 From _Colin Barker_, Mar 29 2016: (Start) %F A271040 a(n) = 10*A000579(n). %F A271040 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>6. %F A271040 G.f.: 10*x^6 / (1-x)^7. %F A271040 (End) %e A271040 When there are 6 players, there are 10 different 3 against 3 matches that can be played: ABC v DEF, ABD v CEF, ABE v CDF, ABF v CDE, ACD v BEF, ACE v BDF, ACF v BDE, ADE v BCF, ADF v BCE, AEF v BCD. %t A271040 LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,10},40] (* _Harvey P. Dale_, Sep 17 2016 *) %o A271040 (PARI) concat(vector(6), Vec(10*x^6/(1-x)^7 + O(x^50))) \\ _Colin Barker_, Mar 29 2016 %o A271040 (PARI) a(n)=binomial(n,3)*binomial(n-3,3)/2 \\ _Charles R Greathouse IV_, May 22 2018 %Y A271040 Cf. A050534, the analogous situation for 2 against 2 matches. %K A271040 nonn,easy %O A271040 0,7 %A A271040 _Elliott Line_, Mar 29 2016