cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271060 Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 261", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 8, 1, 48, 1, 120, 1, 224, 1, 360, 1, 528, 1, 728, 1, 960, 1, 1224, 1, 1520, 1, 1848, 1, 2208, 1, 2600, 1, 3024, 1, 3480, 1, 3968, 1, 4488, 1, 5040, 1, 5624, 1, 6240, 1, 6888, 1, 7568, 1, 8280, 1, 9024, 1, 9800, 1, 10608, 1, 11448, 1, 12320, 1, 13224, 1
Offset: 0

Views

Author

Robert Price, Mar 29 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=261; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)

Formula

Conjectures from Chai Wah Wu, Dec 29 2016: (Start)
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5.
G.f.: (-x^4 - 24*x^3 + 2*x^2 - 8*x - 1)/((x - 1)^3*(x + 1)^3). (End)