A271107 Numbers k such that 33*10^k + 1 is prime.
1, 2, 5, 6, 7, 8, 29, 47, 145, 205, 227, 505, 553, 600, 787, 809, 1305, 1447, 1593, 2285, 4763, 5679, 9133, 12516, 14869, 16536, 33402, 36085, 51933, 56443, 69133
Offset: 1
Examples
5 is in this sequence because 33*10^5+1 = 3300001 is prime. Initial terms and associated primes: a(1) = 1, 331; a(2) = 2, 3301; a(3) = 5, 3300001; a(4) = 6, 33000001; a(5) = 7, 330000001; a(6) = 8, 3300000001, etc.
Links
- Makoto Kamada, Search for 330w1.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[33*10^#+1] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime(33*10^n+1), print1(n, ", "))); \\ Altug Alkan, Mar 31 2016
Comments