A271109 Numbers k such that (5 * 10^k - 119)/3 is prime.
2, 3, 5, 6, 8, 11, 26, 33, 35, 41, 69, 73, 204, 230, 295, 381, 392, 537, 776, 1187, 2187, 2426, 4182, 4589, 5841, 6107, 11513, 13431, 28901, 56256, 65203, 66613, 82085, 91707, 126871, 140281
Offset: 1
Examples
3 is in this sequence because (5*10^3 - 119)/3 = 1627 is prime. Initial terms and associated primes: a(1) = 2, 127; a(2) = 3, 1627; a(3) = 5, 166627; a(4) = 6, 1666627; a(5) = 8, 166666627, etc.
Links
- Makoto Kamada, Search for 16w27.
Programs
-
Mathematica
Select[Range[10^5], PrimeQ[(5 * 10^# - 119)/3] &]
-
PARI
is(n)=ispseudoprime((5*10^n-119)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(35)-a(36) from Robert Price, Mar 29 2018
Comments