A271169 Number of ordered ways to write n as s^5 + t^5 + 2*u^5 + 3*v^5 + 4*w^5 + 5*x^5 + 7*y^5 + 14*z^5, where s,t,u,v,w,x,y,z are nonnegative integers with s <= t.
1, 1, 2, 2, 3, 4, 4, 6, 5, 7, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 7, 5, 6, 4, 5, 4, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 4, 5, 3, 6, 4, 7, 5, 5, 7, 4, 8, 4, 7
Offset: 0
Keywords
Examples
a(1) = 1 since 1 = 0^5 + 1^5 + 2*0^5 + 3*0^5 + 4*0^5 + 5*0^5 + 7*0^5 + 14*0^5. a(2602) = 1 since 2602 = 0^5 + 1^5 + 2*4^5 + 3*2^5 + 4*1^5 + 5*1^5 + 7*0^5 + 14*2^5.
References
- J.-R. Chen, Waring's Problem for g(5)=37, Sci. Sinica 13(1964), 1547-1568.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Programs
-
Mathematica
FQ[n_]:=FQ[n]=IntegerQ[n^(1/5)] Do[r=0;Do[If[FQ[n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5-s^5],r=r+1],{z,0,(n/14)^(1/5)},{y,0,((n-14z^5)/7)^(1/5)},{x,0,((n-14z^5-7y^5)/5)^(1/5)},{w,0,((n-14z^5-7y^5-5x^5)/4)^(1/5)},{v,0,((n-14z^5-7y^5-5x^5-4w^5)/3)^(1/5)},{u,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5)/2)^(1/5)}, {s,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5)/2)^(1/5)}];Print[n," ",r];Label[aa];Continue,{n,0,80}]
Comments