cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271169 Number of ordered ways to write n as s^5 + t^5 + 2*u^5 + 3*v^5 + 4*w^5 + 5*x^5 + 7*y^5 + 14*z^5, where s,t,u,v,w,x,y,z are nonnegative integers with s <= t.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 6, 5, 7, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 7, 5, 6, 4, 5, 4, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 4, 5, 3, 6, 4, 7, 5, 5, 7, 4, 8, 4, 7
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 31 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 1, 2602.
Note that 1+1+2+3+4+5+7+14 = 37. In 1964 J.-R. Chen proved that any natural number can be written as the sum of 37 fifth powers of nonnegative integers.
For k = 2,3,4,... define s(k) as the smallest positive integer s such that {a(1)*x(1)^k+...+a(s)*x(s)^k: x(1),...,x(s) = 0,1,2,...} = {0,1,2,...} for some positive integers a(1), ..., a(s), and t(k) as the least positive integer t such that {a(1)*x(1)^k+...+a(t)*x(t)^k: x(1),...,x(t) = 0,1,2,...} = {0,1,2,...} for some positive integers a(1), ..., a(t) with a(1)+...+a(t) = g(k), where g(.) is given by A002804. Then s(k) <= t(k) <= g(k). Part (iii) of the conjecture in A271099 implies that t(k) <= 2k-1 for k > 2. It is easy to see that s(2) = t(2) = 4. Our computation suggests that s(3) = t(3) = 5, s(4) = t(4) = 7, s(5) = t(5) = 8 (which is smaller than 2*5-1), and s(6) = t(6) = 10. We conjecture that s(k) = t(k) for any integer k > 1, and that each natural number can be written as x(1)^6+x(2)^6+x(3)^6+2*x(4)^6+3*x(5)^6+5*x(6)^6+6*x(7)^6+10*x(8)^6+18*x(9)^6+26*x(10)^6, where x(1),x(2),...,x(10) are nonnegative integers. Note that 1+1+1+2+3+5+6+10+18+26 = 73 = g(6).
We also conjecture that any natural number can be written as s^5+t^5+2*u^5+3*v^5+4*w^5+6*x^5+8*y^5+12*z^5, with s,t,u,v,w,x,y,z nonnegative integers. Note that 1+1+2+3+4+6+8+12 = 37 = g(5). - Zhi-Wei Sun, Apr 04 2016

Examples

			a(1) = 1 since 1 = 0^5 + 1^5 + 2*0^5 + 3*0^5 + 4*0^5 + 5*0^5 + 7*0^5 + 14*0^5.
a(2602) = 1 since 2602 = 0^5 + 1^5 + 2*4^5 + 3*2^5 + 4*1^5 + 5*1^5 + 7*0^5 + 14*2^5.
		

References

  • J.-R. Chen, Waring's Problem for g(5)=37, Sci. Sinica 13(1964), 1547-1568.

Crossrefs

Programs

  • Mathematica
    FQ[n_]:=FQ[n]=IntegerQ[n^(1/5)]
    Do[r=0;Do[If[FQ[n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5-s^5],r=r+1],{z,0,(n/14)^(1/5)},{y,0,((n-14z^5)/7)^(1/5)},{x,0,((n-14z^5-7y^5)/5)^(1/5)},{w,0,((n-14z^5-7y^5-5x^5)/4)^(1/5)},{v,0,((n-14z^5-7y^5-5x^5-4w^5)/3)^(1/5)},{u,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5)/2)^(1/5)}, {s,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5)/2)^(1/5)}];Print[n," ",r];Label[aa];Continue,{n,0,80}]